Welcome to DU!
The truly grassroots left-of-center political community where regular people, not algorithms, drive the discussions and set the standards.
Join the community:
Create a free account
Support DU (and get rid of ads!):
Become a Star Member
Latest Breaking News
Editorials & Other Articles
General Discussion
The DU Lounge
All Forums
Issue Forums
Culture Forums
Alliance Forums
Region Forums
Support Forums
Help & Search
Science
Related: About this forumFinally, A Flying Car(t) The Palletrone is a robotic hovercart for moving stuff anywhere
Posted under Science, since it's still in the lab.
https://spectrum.ieee.org/cargo-drone-2669117300
Been wanting something like this for a very long time.
But I'll settle for one that doesn't fly, will work around my yard, and is cheap.
Where’s your flying car? I’m sorry to say that I have no idea. But here’s something that is somewhat similar, in that it flies, transports things, and has “car” in the name: it’s a flying cart, called the Palletrone (pallet+drone), designed for human-robot interaction-based aerial cargo transportation.
The way this thing works is fairly straightforward. The Palletrone will try to keep its roll and pitch at zero, to make sure that there’s a flat and stable platform for your preciouses, even if you don’t load those preciouses onto the drone evenly. Once loaded up, the drone relies on you to tell it where to go and what to do, using its IMU to respond to the slightest touch and translating those forces into control over the Palletrone’s horizontal, vertical, and yaw trajectories. This is particularly tricky to do, because the system has to be able to differentiate between the force exerted by cargo, and the force exerted by a human, since if the IMU senses a force moving the drone downward, it could be either. But professor Seung Jae Lee tells us that they developed “a simple but effective method to distinguish between them.”
Since the drone has to do all of this sensing and movement without pitching or rolling (since that would dump its cargo directly onto the floor) it’s equipped with internal propeller arms that can be rotated to vector thrust in any direction. We were curious about how having a bunch of unpredictable stuff sitting right above those rotors might affect the performance of the drone. But Seung Jae Lee says that the drone’s porous side structures allow for sufficient airflow and that even when the entire top of the drone is covered, thrust is only decreased by about 5 percent.
The current incarnation of the Palletrone is not particularly smart, and you need to remain in control of it, although if you let it go it will do its best to remain stationary (until it runs out of batteries). The researchers describe the experience of using this thing as “akin to maneuvering a shopping cart,” although I would guess that it’s somewhat noisier. In the video, the Palletrone is loaded down with just under 3 kilograms of cargo, which is respectable enough for testing. The drone is obviously not powerful enough to haul your typical grocery bag up the stairs to your apartment. But, it’s a couple of steps in the right direction, at least.
The way this thing works is fairly straightforward. The Palletrone will try to keep its roll and pitch at zero, to make sure that there’s a flat and stable platform for your preciouses, even if you don’t load those preciouses onto the drone evenly. Once loaded up, the drone relies on you to tell it where to go and what to do, using its IMU to respond to the slightest touch and translating those forces into control over the Palletrone’s horizontal, vertical, and yaw trajectories. This is particularly tricky to do, because the system has to be able to differentiate between the force exerted by cargo, and the force exerted by a human, since if the IMU senses a force moving the drone downward, it could be either. But professor Seung Jae Lee tells us that they developed “a simple but effective method to distinguish between them.”
Since the drone has to do all of this sensing and movement without pitching or rolling (since that would dump its cargo directly onto the floor) it’s equipped with internal propeller arms that can be rotated to vector thrust in any direction. We were curious about how having a bunch of unpredictable stuff sitting right above those rotors might affect the performance of the drone. But Seung Jae Lee says that the drone’s porous side structures allow for sufficient airflow and that even when the entire top of the drone is covered, thrust is only decreased by about 5 percent.
The current incarnation of the Palletrone is not particularly smart, and you need to remain in control of it, although if you let it go it will do its best to remain stationary (until it runs out of batteries). The researchers describe the experience of using this thing as “akin to maneuvering a shopping cart,” although I would guess that it’s somewhat noisier. In the video, the Palletrone is loaded down with just under 3 kilograms of cargo, which is respectable enough for testing. The drone is obviously not powerful enough to haul your typical grocery bag up the stairs to your apartment. But, it’s a couple of steps in the right direction, at least.
Found a copy of the paper at github.
https://dongjaelee95.github.io/files/2024RAL_sj.pdf
(by one of the authors, so it's very OK)
3 replies
= new reply since forum marked as read
Highlight:
NoneDon't highlight anything
5 newestHighlight 5 most recent replies

Finally, A Flying Car(t) The Palletrone is a robotic hovercart for moving stuff anywhere (Original Post)
usonian
Sep 2024
OP
jmbar2
(6,668 posts)1. I want one!
This is too cool - thanks for posting.
JohnnyRingo
(19,714 posts)2. Sounds like a working concept.
Eventually it might be a workable solution for moving goods around indoors. Out in a dynamic atmosphere may need more work.
Warpy
(113,131 posts)3. I just wonder how LOUD it is
That would be the limiting factor on applications, whether or not it makes its users deaf.